Théorème de Kennelly

Présentation des montages sous forme de triangle (à gauche) et d'étoile (à droite).

Le théorème de Kennelly, ou transformation triangle-étoile, ou transformation Y-Δ, ou encore transformation T-Π, est une technique mathématique qui permet de simplifier l'étude de certains réseaux électriques.

Ce théorème, nommé ainsi en hommage à Arthur Edwin Kennelly, permet de passer d'une configuration « triangle » (ou Δ, ou Π, selon la façon dont on dessine le schéma) à une configuration « étoile » (ou, de même, Y ou T). Le schéma ci-contre est dessiné sous la forme « triangle-étoile » ; les schémas ci-dessous sous la forme T-Π.

Ce théorème est utilisé en électrotechnique ou en électronique de puissance afin de simplifer des systèmes triphasés. Il est aussi d'utilisation courante en électronique pour simplifier le calcul de filtres ou d'atténuateurs.

Transformation étoile vers triangle[modifier]

Theoreme de kennelly.png

 

Tableau des formules de transformation ( étoile vers triangle )

Avec les impédances

Avec les admittances

La somme des produits des impédances divisée par l'impédance opposée.

Le produit des admittances adjacentes divisé par la somme totale des admittances.

Z_{AB}=\frac{Z_{AT}.Z_{BT}+ Z_{BT}.Z_{CT}+Z_{CT}.Z_{AT}}{Z_{CT}}

Z_{BC}=\frac{Z_{AT}.Z_{BT}+ Z_{BT}.Z_{CT}+Z_{CT}.Z_{AT}}{Z_{AT}}

Z_{CA}=\frac{Z_{AT}.Z_{BT}+ Z_{BT}.Z_{CT}+Z_{CT}.Z_{AT}}{Z_{BT}}

Y_{AB}=\frac{Y_{AT} . Y_{BT}}{Y_{AT}+Y_{BT}+Y_{CT}}

Y_{BC}=\frac{Y_{BT} . Y_{CT}}{Y_{AT}+Y_{BT}+Y_{CT}}

Y_{CA}=\frac{Y_{CT} . Y_{AT}}{Y_{AT}+Y_{BT}+Y_{CT}}

[afficher]

Démonstration

 

Transformation triangle vers étoile[modifier]

On parle ici d'une équivalence d'un circuit en T avec un circuit en π. Dans la pratique, on utilise davantage la transformation qui consiste à passer d'un circuit en π à un circuit en T.

Theoreme de kennelly.png

 

Tableau des formules de conversion ( triangle vers étoile )

Avec les impédances

Avec les admitances

Le produit des impédances adjacentes divisé par la somme totale des impédances.

La somme des produits des admittances divisée par l'admittance opposée.

Z_{AT}=\frac{Z_{AB} . Z_{AC}}{Z_{AB}+Z_{BC}+Z_{AC}}

Z_{BT}=\frac{Z_{AB} . Z_{BC}}{Z_{AB}+Z_{BC}+Z_{AC}}

Z_{CT}=\frac{Z_{AC} . Z_{BC}}{Z_{AB}+Z_{BC}+Z_{AC}}

Y_{AT}=\frac{Y_{AB}.Y_{BC}+ Y_{CA}.Y_{AB}+Y_{BC}.Y_{CA}}{Y_{BC}}

Y_{BT}=\frac{Y_{AB}.Y_{BC}+ Y_{CA}.Y_{AB}+Y_{BC}.Y_{CA}}{Y_{CA}}

Y_{CT}=\frac{Y_{AB}.Y_{BC}+ Y_{CA}.Y_{AB}+Y_{BC}.Y_{CA}}{Y_{AB}}

Voir aussi[modifier]

§                    Électricité

§                    Électrocinétique