|
Peter
Gwozdz |
Results: |
#NOME? |
SBP
= Statistical Background Percent |
16 |
End
of the Gap |
|
|
|
|
|
|
|
|
|
|
15,0% |
|
#NOME? |
minimum
from this column |
|
|
|
|
|
|
Poisson
Confidence Interval (Demonstration) |
|
Confidence
Calculation |
|
|
|
Input
data in column A |
|
#NOME? |
Statistical Mountain
Number |
|
#NOME? |
Mountain Number |
|
Poisson tail |
|
#NOME? |
minimum from this column |
|
70% |
Confidence (70% is
recommended) |
#NOME? |
Statistical (Mountain)
Background |
|
#NOME? |
Gap Number |
|
12 |
Cutoff integer check of
user input |
|
for use in the Poisson
function |
|
#NOME? |
minimum SBP value from
this column |
|
4 |
Number of samples; must be an integer |
40 |
Number of samples in the
set; must be an integer |
12 |
Cutoff |
|
12 |
Cutoff |
|
#NOME? |
Type Outliers |
|
5 |
Gap check |
|
|
|
|
|
|
80% |
Enter the confidence |
|
90,0% |
Probability |
|
5 |
Gap |
|
5 |
Gap |
|
|
|
#NOME? |
(Mountain) Background |
3 |
Gap display check |
|
|
|
|
#NOME? |
Confidence Interval
Lower Number |
|
3 |
Gap frequency display |
|
Click sheet "SPD Doc for instuctions |
|
|
|
= Average Gap Frequency |
|
|
|
|
|
Statistical |
|
|
#NOME? |
Calculated Low Confidence
Limit |
|
|
To reduce the x-axis on the graph |
|
#NOME? |
Statistical Gap Number |
|
SBP Trials |
|
End = End of Gap = Cutoff
+ Gap -1 |
|
Gap |
Gap |
|
#NOME? |
Calculated High
Confidence Limit |
|
#NOME? |
Confidence Interval
Upper Number |
|
|
Delete cells at the bottom;
all 5 of these columns |
|
#NOME? |
Statistical Average Gap
Frequency |
|
Cutoff |
Gap |
Cutoff |
Gap |
End |
Mountain |
M+G |
Gap |
|
Statistical Numbers |
Average |
Average |
SBP |
|
|
Do not delete the rows, just highlight the data & press
Delete |
|
|
= Statistical Background |
|
|
|
|
|
|
Number |
|
Number |
Mountain |
Gap |
Frequency |
Frequency |
|
|
|
I downloaded the Poisson
functions from: |
|
Label |
< Label |
|
Step |
Total |
Frequency |
Gap |
Display |
|
#NOME? |
Size (of the Type) |
|
|
|
12 |
5 |
16 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
This is the requested
Cutoff & Gap |
|
http://statpages.org/confint.html |
|
#NOME? |
< Copy of the
"Total" |
0 |
#NOME? |
#NOME? |
0 |
0 |
|
#NOME? |
Size confidence minimum |
|
11 |
4 |
11 |
4 |
14 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
These blue rows are the
"neighbor" values |
|
These Poisson functions
are Macros |
|
#NOME? |
Column A |
1 |
#NOME? |
#NOME? |
1 |
0 |
|
#NOME? |
Size confidence maximum |
|
11 |
5 |
11 |
5 |
15 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
Cutoff / Gap with +/- One |
|
So Excel gives a warning
when opening this file |
|
#NOME? |
Start at row 11 |
2 |
#NOME? |
#NOME? |
|
0 |
|
|
11 |
6 |
11 |
6 |
16 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
There may be duplicates
in here |
|
Peter Gwozdz |
|
#NOME? |
|
3 |
#NOME? |
#NOME? |
3 |
0 |
|
|
12 |
4 |
12 |
4 |
15 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
See if your values are
"local minimums" |
|
|
|
#NOME? |
|
4 |
#NOME? |
#NOME? |
4 |
0 |
|
|
12 |
6 |
12 |
6 |
17 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
5 |
#NOME? |
#NOME? |
5 |
0 |
|
|
13 |
4 |
13 |
4 |
16 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
6 |
#NOME? |
#NOME? |
6 |
0 |
|
|
13 |
5 |
13 |
5 |
17 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
|
#NOME? |
|
7 |
#NOME? |
#NOME? |
7 |
0 |
|
|
13 |
6 |
13 |
6 |
18 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
8 |
#NOME? |
#NOME? |
8 |
0 |
|
|
10 |
3 |
10 |
3 |
12 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
The rest of these are 2
counts beyond your values |
|
|
|
#NOME? |
|
9 |
#NOME? |
#NOME? |
9 |
0 |
|
|
10 |
4 |
10 |
4 |
13 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
There may be "false
minimums" at another gap beyond your gap |
|
|
#NOME? |
|
10 |
#NOME? |
#NOME? |
10 |
0 |
|
|
10 |
5 |
10 |
5 |
14 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
And duplicates |
|
|
|
#NOME? |
|
11 |
#NOME? |
#NOME? |
11,9 |
0 |
|
|
10 |
6 |
10 |
6 |
15 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
12 |
#NOME? |
#NOME? |
12 |
3 |
|
|
10 |
7 |
10 |
7 |
16 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
13 |
#NOME? |
#NOME? |
13 |
3 |
|
|
11 |
3 |
11 |
3 |
13 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
14 |
#NOME? |
#NOME? |
14 |
3 |
|
|
11 |
7 |
11 |
7 |
17 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
15 |
#NOME? |
#NOME? |
15 |
3 |
|
|
12 |
3 |
12 |
3 |
14 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
16 |
#NOME? |
#NOME? |
16 |
3 |
|
|
12 |
7 |
12 |
7 |
18 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
17 |
#NOME? |
#NOME? |
16,1 |
0 |
|
|
13 |
3 |
13 |
3 |
15 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
|
|
#NOME? |
|
18 |
#NOME? |
#NOME? |
18 |
0 |
|
|
13 |
7 |
13 |
7 |
19 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
19 |
#NOME? |
#NOME? |
19 |
0 |
|
|
14 |
3 |
14 |
3 |
16 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
20 |
#NOME? |
#NOME? |
20 |
0 |
|
|
14 |
4 |
14 |
4 |
17 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
#NOME? |
|
21 |
#NOME? |
#NOME? |
21 |
0 |
|
14 |
5 |
14 |
5 |
18 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
22 |
#NOME? |
#NOME? |
22 |
0 |
|
14 |
6 |
14 |
6 |
19 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
23 |
#NOME? |
#NOME? |
23 |
0 |
|
14 |
7 |
14 |
7 |
20 |
#NOME? |
#### |
###### |
#NOME? |
##### |
#NOME? |
#NOME? |
#NOME? |
|
|
#NOME? |
|
24 |
#NOME? |
#NOME? |
24 |
0 |
|
|
#NOME? |
|
25 |
#NOME? |
#NOME? |
25 |
0 |
|
|
#NOME? |
|
26 |
#NOME? |
#NOME? |
26 |
0 |
|
|
#NOME? |
|
27 |
#NOME? |
#NOME? |
27 |
0 |
|
|
#NOME? |
|
28 |
#NOME? |
#NOME? |
28 |
0 |
|
|
#NOME? |
|
29 |
#NOME? |
#NOME? |
29 |
0 |
|
|
#NOME? |
|
30 |
#NOME? |
#NOME? |
30 |
0 |
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
|
|
#NOME? |
|
#NOME? |
|
#NOME? |
|
#NOME? |
|
#NOME? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|